EPYC 9555 vs Opteron 6338P
Primary details
Comparing Opteron 6338P and EPYC 9555 processor market type (desktop or notebook), architecture, sales start time and price.
Place in the ranking | not rated | not rated |
Place by popularity | not in top-100 | not in top-100 |
Market segment | Server | Server |
Architecture codename | Warsaw (2014) | Turin (2024) |
Release date | 22 January 2014 (10 years ago) | 10 October 2024 (less than a year ago) |
Launch price (MSRP) | $377 | $9,826 |
Detailed specifications
Opteron 6338P and EPYC 9555 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.
Physical cores | 12 (Dodeca-Core) | 64 (Tetrahexaconta-Core) |
Threads | 12 | 128 |
Base clock speed | 2.3 GHz | 3.2 GHz |
Boost clock speed | 2.8 GHz | 4.4 GHz |
L1 cache | 576 KB | 80 KB (per core) |
L2 cache | 2 MB (per module) | 1 MB (per core) |
L3 cache | 8 MB (per die) | 256 MB (shared) |
Chip lithography | 32 nm | 4 nm |
Die size | 2x 315 mm2 | 8x 70.6 mm2 |
Maximum case temperature (TCase) | 69 °C | no data |
Number of transistors | 2,400 million | 66,520 million |
64 bit support | + | + |
Compatibility
Information on Opteron 6338P and EPYC 9555 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.
Number of CPUs in a configuration | 4 | 2 |
Socket | G34 | SP5 |
Power consumption (TDP) | 99 Watt | 360 Watt |
Technologies and extensions
Technological solutions and additional instructions supported by Opteron 6338P and EPYC 9555. You'll probably need this information if you require some particular technology.
AES-NI | + | + |
FMA | + | - |
AVX | - | + |
Precision Boost 2 | no data | + |
Virtualization technologies
Virtual machine speed-up technologies supported by Opteron 6338P and EPYC 9555 are enumerated here.
AMD-V | + | + |
Memory specs
Types, maximum amount and channel quantity of RAM supported by Opteron 6338P and EPYC 9555. Depending on the motherboard, higher memory frequencies may be supported.
Supported memory types | DDR3 | DDR5 |
Graphics specifications
General parameters of integrated GPUs, if any.
Integrated graphics card | N/A | N/A |
Peripherals
Specifications and connection of peripherals supported by Opteron 6338P and EPYC 9555.
PCIe version | 2.0 | 5.0 |
PCI Express lanes | no data | 128 |
Pros & cons summary
Recency | 22 January 2014 | 10 October 2024 |
Physical cores | 12 | 64 |
Threads | 12 | 128 |
Chip lithography | 32 nm | 4 nm |
Power consumption (TDP) | 99 Watt | 360 Watt |
Opteron 6338P has 263.6% lower power consumption.
EPYC 9555, on the other hand, has an age advantage of 10 years, 433.3% more physical cores and 966.7% more threads, and a 700% more advanced lithography process.
We couldn't decide between Opteron 6338P and EPYC 9555. We've got no test results to judge.
Should you still have questions on choice between Opteron 6338P and EPYC 9555, ask them in Comments section, and we shall answer.
Other comparisons
We've compiled a selection of CPU comparisons, ranging from closely matched processors to other comparisons that may be of interest.