Arc A780 vs Radeon RX Vega 64

#ad 
Buy on Amazon
VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking129not rated
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation21.94no data
Power efficiency8.65no data
ArchitectureGCN 5.0 (2017−2020)Generation 12.7 (2022−2023)
GPU code nameVega 10DG2-512
Market segmentDesktopDesktop
Release date7 August 2017 (7 years ago)2022 (3 years ago)
Launch price (MSRP)$499 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores40964096
Core clock speed1247 MHz2200 MHz
Boost clock speed1546 MHz2200 MHz
Number of transistors12,500 million21,700 million
Manufacturing process technology14 nm6 nm
Power consumption (TDP)295 Watt200 Watt
Texture fill rate395.8563.2
Floating-point processing power12.66 TFLOPS18.02 TFLOPS
ROPs64128
TMUs256256
Tensor Coresno data512
Ray Tracing Coresno data32

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 3.0 x16PCIe 4.0 x16
Length279 mmno data
Width2-slot2-slot
Supplementary power connectors2x 8-pin2x 8-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeHBM2GDDR6X
Maximum RAM amount8 GB16 GB
Memory bus width2048 Bit256 Bit
Memory clock speed945 MHz1093 MHz
Memory bandwidth483.8 GB/s559.6 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x HDMI, 3x DisplayPort1x HDMI 2.1, 3x DisplayPort 2.0
HDMI++

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 Ultimate (12_2)
Shader Model6.46.6
OpenGL4.64.6
OpenCL2.03.0
Vulkan1.1.1251.3

Pros & cons summary


Maximum RAM amount 8 GB 16 GB
Chip lithography 14 nm 6 nm
Power consumption (TDP) 295 Watt 200 Watt

Arc A780 has a 100% higher maximum VRAM amount, a 133.3% more advanced lithography process, and 47.5% lower power consumption.

We couldn't decide between Radeon RX Vega 64 and Arc A780. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 64
Radeon RX Vega 64
Intel Arc A780
Arc A780

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4.3 726 votes

Rate Radeon RX Vega 64 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.9 83 votes

Rate Arc A780 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.