Radeon R9 270 1024SP vs RX Vega 6 (Ryzen 2000/3000)

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking768not rated
Place by popularitynot in top-100not in top-100
Power efficiency14.13no data
ArchitectureVega (2017−2020)GCN 1.0 (2011−2020)
GPU code nameVega Raven RidgePitcairn
Market segmentLaptopDesktop
Release date7 January 2018 (6 years ago)13 March 2015 (9 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores3841024
Core clock speedno data900 MHz
Boost clock speed1100 MHz925 MHz
Number of transistorsno data2,800 million
Manufacturing process technology14 nm28 nm
Power consumption (TDP)15 Watt150 Watt
Texture fill rateno data59.20
Floating-point processing powerno data1.894 TFLOPS
ROPsno data32
TMUsno data64

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Interfaceno dataPCIe 3.0 x16
Widthno data2-slot
Supplementary power connectorsno data1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeno dataGDDR5
Maximum RAM amountno data2 GB
Memory bus widthno data256 Bit
Memory clock speedno data1200 MHz
Memory bandwidthno data153.6 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno data2x DVI, 1x HDMI, 1x DisplayPort
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12_112 (11_1)
Shader Modelno data5.1
OpenGLno data4.6
OpenCLno data1.2
Vulkan-1.2.131

Pros & cons summary


Recency 7 January 2018 13 March 2015
Chip lithography 14 nm 28 nm
Power consumption (TDP) 15 Watt 150 Watt

RX Vega 6 (Ryzen 2000/3000) has an age advantage of 2 years, a 100% more advanced lithography process, and 900% lower power consumption.

We couldn't decide between Radeon RX Vega 6 (Ryzen 2000/3000) and Radeon R9 270 1024SP. We've got no test results to judge.

Be aware that Radeon RX Vega 6 (Ryzen 2000/3000) is a notebook card while Radeon R9 270 1024SP is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 6 (Ryzen 2000/3000)
Radeon RX Vega 6 (Ryzen 2000/3000)
AMD Radeon R9 270 1024SP
Radeon R9 270 1024SP

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.6 68 votes

Rate Radeon RX Vega 6 (Ryzen 2000/3000) on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.3 3 votes

Rate Radeon R9 270 1024SP on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.