GeForce GT 1030 DDR4 vs Qualcomm SD X Adreno X1-85 3.8 TFLOPS

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking431not rated
Place by popularitynot in top-100not in top-100
Power efficiency24.55no data
Architectureno dataPascal (2016−2021)
GPU code nameno dataGP108
Market segmentLaptopDesktop
Release dateno data12 March 2018 (6 years ago)
Launch price (MSRP)no data$79

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores1536384
Core clock speedno data1152 MHz
Boost clock speed1250 MHz1379 MHz
Number of transistorsno data1,800 million
Manufacturing process technology4 nm14 nm
Power consumption (TDP)30 Watt20 Watt
Texture fill rateno data33.10
Floating-point processing powerno data1.059 TFLOPS
ROPsno data16
TMUsno data24

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Interfaceno dataPCIe 3.0 x4
Lengthno data145 mm
Widthno data1-slot
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeLPDDR5xDDR4
Maximum RAM amountno data2 GB
Memory bus widthno data64 Bit
Memory clock speed8448 MHz1050 MHz
Memory bandwidthno data16.8 GB/s
Shared memory+no data

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno data1x DVI, 1x HDMI
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12_112 (12_1)
Shader Modelno data6.4
OpenGLno data4.6
OpenCLno data1.2
Vulkan-1.2.131
CUDA-6.1

Pros & cons summary


Chip lithography 4 nm 14 nm
Power consumption (TDP) 30 Watt 20 Watt

Qualcomm SD X Adreno X1-85 3.8 TFLOPS has a 250% more advanced lithography process.

GT 1030 DDR4, on the other hand, has 50% lower power consumption.

We couldn't decide between Qualcomm SD X Adreno X1-85 3.8 TFLOPS and GeForce GT 1030 DDR4. We've got no test results to judge.

Be aware that Qualcomm SD X Adreno X1-85 3.8 TFLOPS is a notebook card while GeForce GT 1030 DDR4 is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


Qualcomm SD X Adreno X1-85 3.8 TFLOPS
SD X Adreno X1-85 3.8 TFLOPS
NVIDIA GeForce GT 1030 DDR4
GeForce GT 1030 DDR4

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3 10 votes

Rate Qualcomm SD X Adreno X1-85 3.8 TFLOPS on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.1 1047 votes

Rate GeForce GT 1030 DDR4 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.