GeForce Go 7950 GTX vs Quadro P5000 Mobile
Aggregate performance score
We've compared Quadro P5000 Mobile with GeForce Go 7950 GTX, including specs and performance data.
P5000 Mobile outperforms Go 7950 GTX by a whopping 4324% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 192 | 1181 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 7.40 | no data |
Power efficiency | 20.74 | 1.04 |
Architecture | Pascal (2016−2021) | Curie (2003−2013) |
GPU code name | GP104 | G71 |
Market segment | Mobile workstation | Laptop |
Release date | 11 January 2017 (8 years ago) | 12 October 2006 (18 years ago) |
Launch price (MSRP) | $1,885 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 2048 | 32 |
Core clock speed | 1278 MHz | 575 MHz |
Boost clock speed | 1582 MHz | 575 MHz |
Number of transistors | 7,200 million | 278 million |
Manufacturing process technology | 16 nm | 90 nm |
Power consumption (TDP) | 100 Watt | 45 Watt |
Texture fill rate | 202.5 | 13.80 |
Floating-point processing power | 6.48 TFLOPS | no data |
ROPs | 64 | 16 |
TMUs | 128 | 24 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | large | large |
Interface | MXM-B (3.0) | MXM-III |
Supplementary power connectors | no data | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | GDDR3 |
Maximum RAM amount | 16 GB | 512 MB |
Memory bus width | 256 Bit | 256 Bit |
Memory clock speed | 1502 MHz | 700 MHz |
Memory bandwidth | 192 GB/s | 44.8 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | No outputs |
Display Port | 1.4 | no data |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
Optimus | + | - |
3D Stereo | + | no data |
Mosaic | + | no data |
nView Display Management | + | no data |
Optimus | + | no data |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 | 9.0c (9_3) |
Shader Model | 6.4 | 3.0 |
OpenGL | 4.5 | 2.1 |
OpenCL | 1.2 | N/A |
Vulkan | 1.2.131 | N/A |
CUDA | 6.1 | - |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
- Passmark
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
FPS performance in popular games
- Full HD
Low Preset - Full HD
Medium Preset - Full HD
High Preset - Full HD
Ultra Preset - 1440p
High Preset - 1440p
Ultra Preset - 4K
High Preset - 4K
Ultra Preset
Counter-Strike 2 | 6−7
+0%
|
6−7
+0%
|
Cyberpunk 2077 | 3−4
+0%
|
3−4
+0%
|
Elden Ring | 0−1 | 0−1 |
Counter-Strike 2 | 6−7
+0%
|
6−7
+0%
|
Cyberpunk 2077 | 3−4
+0%
|
3−4
+0%
|
Forza Horizon 4 | 7−8
+0%
|
7−8
+0%
|
Red Dead Redemption 2 | 5−6
+0%
|
5−6
+0%
|
Counter-Strike 2 | 6−7
+0%
|
6−7
+0%
|
Cyberpunk 2077 | 3−4
+0%
|
3−4
+0%
|
Elden Ring | 0−1 | 0−1 |
Far Cry 5 | 8−9
+0%
|
8−9
+0%
|
Fortnite | 1−2
+0%
|
1−2
+0%
|
Forza Horizon 4 | 7−8
+0%
|
7−8
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 9−10
+0%
|
9−10
+0%
|
Red Dead Redemption 2 | 5−6
+0%
|
5−6
+0%
|
The Witcher 3: Wild Hunt | 5−6
+0%
|
5−6
+0%
|
World of Tanks | 18−20
+0%
|
18−20
+0%
|
Counter-Strike 2 | 6−7
+0%
|
6−7
+0%
|
Cyberpunk 2077 | 3−4
+0%
|
3−4
+0%
|
Far Cry 5 | 8−9
+0%
|
8−9
+0%
|
Forza Horizon 4 | 7−8
+0%
|
7−8
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 9−10
+0%
|
9−10
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 4−5
+0%
|
4−5
+0%
|
World of Tanks | 2−3
+0%
|
2−3
+0%
|
Counter-Strike 2 | 30−35
+0%
|
30−35
+0%
|
Cyberpunk 2077 | 3−4
+0%
|
3−4
+0%
|
Far Cry 5 | 4−5
+0%
|
4−5
+0%
|
The Witcher 3: Wild Hunt | 4−5
+0%
|
4−5
+0%
|
Valorant | 5−6
+0%
|
5−6
+0%
|
Dota 2 | 14−16
+0%
|
14−16
+0%
|
Grand Theft Auto V | 14−16
+0%
|
14−16
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 2−3
+0%
|
2−3
+0%
|
The Witcher 3: Wild Hunt | 14−16
+0%
|
14−16
+0%
|
Battlefield 5 | 0−1 | 0−1 |
Cyberpunk 2077 | 2−3
+0%
|
2−3
+0%
|
Dota 2 | 14−16
+0%
|
14−16
+0%
|
Valorant | 1−2
+0%
|
1−2
+0%
|
All in all, in popular games:
- there's a draw in 34 tests (100%)
Pros & cons summary
Performance score | 30.08 | 0.68 |
Recency | 11 January 2017 | 12 October 2006 |
Maximum RAM amount | 16 GB | 512 MB |
Chip lithography | 16 nm | 90 nm |
Power consumption (TDP) | 100 Watt | 45 Watt |
P5000 Mobile has a 4323.5% higher aggregate performance score, an age advantage of 10 years, a 3100% higher maximum VRAM amount, and a 462.5% more advanced lithography process.
Go 7950 GTX, on the other hand, has 122.2% lower power consumption.
The Quadro P5000 Mobile is our recommended choice as it beats the GeForce Go 7950 GTX in performance tests.
Be aware that Quadro P5000 Mobile is a mobile workstation card while GeForce Go 7950 GTX is a mobile workstation one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Other comparisons
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.