Tesla V100 PCIe 16 GB vs HD Graphics 4000

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking1063not rated
Place by popularity42not in top-100
Power efficiency1.82no data
ArchitectureGeneration 7.0 (2012−2013)Volta (2017−2020)
GPU code nameIvy Bridge GT2GV100
Market segmentDesktopWorkstation
Release date14 May 2012 (12 years ago)21 June 2017 (7 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores1285120
Core clock speed650 MHz1246 MHz
Boost clock speed1000 MHz1380 MHz
Number of transistors1,200 million21,100 million
Manufacturing process technology22 nm12 nm
Power consumption (TDP)unknown300 Watt
Texture fill rate16.00441.6
Floating-point processing power0.256 TFLOPS14.13 TFLOPS
ROPs2128
TMUs16320
Tensor Coresno data640

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceRing BusPCIe 3.0 x16
WidthIGP2-slot
Supplementary power connectorsno data2x 8-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedHBM2
Maximum RAM amountSystem Shared16 GB
Memory bus widthSystem Shared4096 Bit
Memory clock speedSystem Shared876 MHz
Memory bandwidthno data897.0 GB/s
Shared memory+-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsPortable Device DependentNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Quick Sync+no data

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX11.1 (11_0)12 (12_1)
Shader Model5.06.4
OpenGL4.04.6
OpenCL1.21.2
Vulkan+1.2.131
CUDA-7.0

Pros & cons summary


Recency 14 May 2012 21 June 2017
Chip lithography 22 nm 12 nm

Tesla V100 PCIe 16 GB has an age advantage of 5 years, and a 83.3% more advanced lithography process.

We couldn't decide between HD Graphics 4000 and Tesla V100 PCIe 16 GB. We've got no test results to judge.

Be aware that HD Graphics 4000 is a desktop card while Tesla V100 PCIe 16 GB is a workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


Intel HD Graphics 4000
HD Graphics 4000
NVIDIA Tesla V100 PCIe 16 GB
Tesla V100 PCIe 16 GB

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.1 5194 votes

Rate HD Graphics 4000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.9 20 votes

Rate Tesla V100 PCIe 16 GB on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.