GeForce GT 440 vs GTX 470
Aggregate performance score
We've compared GeForce GTX 470 and GeForce GT 440, covering specs and all relevant benchmarks.
GTX 470 outperforms GT 440 by a whopping 302% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 519 | 895 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 1.34 | 0.08 |
Power efficiency | 2.59 | 2.13 |
Architecture | Fermi (2010−2014) | Fermi (2010−2014) |
GPU code name | GF100 | GF108 |
Market segment | Desktop | Desktop |
Release date | 26 March 2010 (14 years ago) | 1 February 2011 (13 years ago) |
Launch price (MSRP) | $349 | $79 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
GTX 470 has 1575% better value for money than GT 440.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 448 | 96 |
Core clock speed | 607 MHz | 810 MHz |
Number of transistors | 3,100 million | 585 million |
Manufacturing process technology | 40 nm | 40 nm |
Power consumption (TDP) | 215 Watt | 65 Watt |
Maximum GPU temperature | 105 °C | 98 °C |
Texture fill rate | 34.05 | 12.96 |
Floating-point processing power | 1.089 TFLOPS | 0.311 TFLOPS |
ROPs | 40 | 4 |
TMUs | 56 | 16 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Bus support | 16x PCI-E 2.0 | PCI-E 2.0 x 16 |
Interface | PCIe 2.0 x16 | PCIe 2.0 x16 |
Length | 241 mm | 145 mm |
Height | 4.376" (111 mm) (11.1 cm) | 4.376" (11.1 cm) |
Width | 2-slot | 1-slot |
Supplementary power connectors | 2x 6-pin | None |
SLI options | + | - |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | DDR3 |
Maximum RAM amount | 1280 MB | 512 MB GDDR5 or 1 GB |
Standard memory config per GPU | no data | 1 GB GDDR5 or 2 GB |
Memory bus width | 320 Bit | 128 Bit |
Memory clock speed | 1674 MHz (3348 data rate) | 1600 MHz (GDDR5) or 900 MHz (DDR3) |
Memory bandwidth | 133.9 GB/s | 28.8 (DDR3) – 51.2 (GDDR5) |
Shared memory | - | no data |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | Two Dual Link DVIMini HDMI | HDMIVGADual Link DVI |
Multi monitor support | + | + |
HDMI | + | + |
Maximum VGA resolution | 2048x1536 | 2048x1536 |
Audio input for HDMI | Internal | Internal |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (11_0) | 12 (11_0) |
Shader Model | 5.1 | 5.1 |
OpenGL | 4.2 | 4.2 |
OpenCL | 1.1 | 1.1 |
Vulkan | N/A | N/A |
CUDA | + | + |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
3DMark Fire Strike Graphics
Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.
GeekBench 5 OpenCL
Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses OpenCL API by Khronos Group.
Octane Render OctaneBench
This is a special benchmark measuring graphics card performance in OctaneRender, which is a realistic GPU rendering engine by OTOY Inc., available either as a standalone program, or as a plugin for 3DS Max, Cinema 4D and many other apps. It renders four different static scenes, then compares render times with a reference GPU which is currently GeForce GTX 980. This benchmark has nothing to do with gaming and is aimed at professional 3D graphics artists.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
900p | 55
+358%
| 12−14
−358%
|
Full HD | 63
+350%
| 14−16
−350%
|
1200p | 53
+342%
| 12−14
−342%
|
Cost per frame, $
1080p | 5.54
+1.9%
| 5.64
−1.9%
|
- GTX 470 and GT 440 have nearly equal cost per frame in 1080p
FPS performance in popular games
Full HD
Low Preset
Counter-Strike 2 | 16−18
+433%
|
3−4
−433%
|
Cyberpunk 2077 | 16−18
+433%
|
3−4
−433%
|
Elden Ring | 21−24
+340%
|
5−6
−340%
|
Full HD
Medium Preset
Battlefield 5 | 24−27
+333%
|
6−7
−333%
|
Counter-Strike 2 | 16−18
+433%
|
3−4
−433%
|
Cyberpunk 2077 | 16−18
+433%
|
3−4
−433%
|
Forza Horizon 4 | 30−35
+357%
|
7−8
−357%
|
Metro Exodus | 21−24
+320%
|
5−6
−320%
|
Red Dead Redemption 2 | 21−24
+340%
|
5−6
−340%
|
Valorant | 27−30
+367%
|
6−7
−367%
|
Full HD
High Preset
Battlefield 5 | 24−27
+333%
|
6−7
−333%
|
Counter-Strike 2 | 16−18
+433%
|
3−4
−433%
|
Cyberpunk 2077 | 16−18
+433%
|
3−4
−433%
|
Dota 2 | 27−30
+314%
|
7−8
−314%
|
Elden Ring | 21−24
+340%
|
5−6
−340%
|
Far Cry 5 | 35−40
+338%
|
8−9
−338%
|
Fortnite | 45−50
+380%
|
10−11
−380%
|
Forza Horizon 4 | 30−35
+357%
|
7−8
−357%
|
Grand Theft Auto V | 27−30
+367%
|
6−7
−367%
|
Metro Exodus | 21−24
+320%
|
5−6
−320%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 60−65
+357%
|
14−16
−357%
|
Red Dead Redemption 2 | 21−24
+340%
|
5−6
−340%
|
The Witcher 3: Wild Hunt | 24−27
+317%
|
6−7
−317%
|
Valorant | 27−30
+367%
|
6−7
−367%
|
World of Tanks | 120−130
+307%
|
30−33
−307%
|
Full HD
Ultra Preset
Battlefield 5 | 24−27
+333%
|
6−7
−333%
|
Counter-Strike 2 | 16−18
+433%
|
3−4
−433%
|
Cyberpunk 2077 | 16−18
+433%
|
3−4
−433%
|
Dota 2 | 64
+357%
|
14−16
−357%
|
Far Cry 5 | 35−40
+338%
|
8−9
−338%
|
Forza Horizon 4 | 30−35
+357%
|
7−8
−357%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 60−65
+357%
|
14−16
−357%
|
Valorant | 27−30
+367%
|
6−7
−367%
|
1440p
High Preset
Dota 2 | 9−10
+350%
|
2−3
−350%
|
Elden Ring | 10−12
+450%
|
2−3
−450%
|
Grand Theft Auto V | 10−11
+400%
|
2−3
−400%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 40−45
+344%
|
9−10
−344%
|
Red Dead Redemption 2 | 7−8
+600%
|
1−2
−600%
|
World of Tanks | 55−60
+314%
|
14−16
−314%
|
1440p
Ultra Preset
Battlefield 5 | 14−16
+400%
|
3−4
−400%
|
Counter-Strike 2 | 10−11
+400%
|
2−3
−400%
|
Cyberpunk 2077 | 6−7
+500%
|
1−2
−500%
|
Far Cry 5 | 16−18
+325%
|
4−5
−325%
|
Forza Horizon 4 | 16−18
+433%
|
3−4
−433%
|
Metro Exodus | 12−14
+333%
|
3−4
−333%
|
The Witcher 3: Wild Hunt | 10−11
+400%
|
2−3
−400%
|
Valorant | 20−22
+400%
|
4−5
−400%
|
4K
High Preset
Counter-Strike 2 | 2−3 | 0−1 |
Dota 2 | 18−20
+375%
|
4−5
−375%
|
Elden Ring | 5−6
+400%
|
1−2
−400%
|
Grand Theft Auto V | 18−20
+350%
|
4−5
−350%
|
Metro Exodus | 4−5 | 0−1 |
PLAYERUNKNOWN'S BATTLEGROUNDS | 21−24
+360%
|
5−6
−360%
|
Red Dead Redemption 2 | 5−6
+400%
|
1−2
−400%
|
The Witcher 3: Wild Hunt | 18−20
+350%
|
4−5
−350%
|
4K
Ultra Preset
Battlefield 5 | 7−8
+600%
|
1−2
−600%
|
Counter-Strike 2 | 2−3 | 0−1 |
Cyberpunk 2077 | 2−3 | 0−1 |
Dota 2 | 18−20
+375%
|
4−5
−375%
|
Far Cry 5 | 10−11
+400%
|
2−3
−400%
|
Fortnite | 8−9
+700%
|
1−2
−700%
|
Forza Horizon 4 | 9−10
+350%
|
2−3
−350%
|
Valorant | 8−9
+700%
|
1−2
−700%
|
This is how GTX 470 and GT 440 compete in popular games:
- GTX 470 is 358% faster in 900p
- GTX 470 is 350% faster in 1080p
- GTX 470 is 342% faster in 1200p
Pros & cons summary
Performance score | 8.09 | 2.01 |
Recency | 26 March 2010 | 1 February 2011 |
Maximum RAM amount | 1280 MB | 512 MB GDDR5 or 1 GB |
Power consumption (TDP) | 215 Watt | 65 Watt |
GTX 470 has a 302.5% higher aggregate performance score.
GT 440, on the other hand, has an age advantage of 10 months, a 40860% higher maximum VRAM amount, and 230.8% lower power consumption.
The GeForce GTX 470 is our recommended choice as it beats the GeForce GT 440 in performance tests.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Other comparisons
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.