Quadro K3100M vs GeForce GTX 460

#ad 
Buy on Amazon
VS

Aggregate performance score

We've compared GeForce GTX 460 with Quadro K3100M, including specs and performance data.

GTX 460
2010
2 GB GDDR5, 160 Watt
5.89

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking596595
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation1.240.27
Power efficiency2.535.42
ArchitectureFermi (2010−2014)Kepler (2012−2018)
GPU code nameGF104GK104
Market segmentDesktopMobile workstation
Release date12 July 2010 (14 years ago)23 July 2013 (11 years ago)
Launch price (MSRP)$199 $1,999

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

GTX 460 has 359% better value for money than K3100M.

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores336768
Core clock speed675 MHz706 MHz
Number of transistors1,950 million3,540 million
Manufacturing process technology40 nm28 nm
Power consumption (TDP)160 Watt75 Watt
Texture fill rate37.8045.18
Floating-point processing power0.9072 TFLOPS1.084 TFLOPS
ROPs2432
TMUs5664

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datalarge
Bus support16x PCI-E 2.0no data
InterfacePCIe 2.0 x16MXM-B (3.0)
Length210 mmno data
Height4.376"(111 mm) (11.1 cm)no data
Width2-slotno data
Supplementary power connectors2x 6-pinno data
SLI options+-

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5GDDR5
Maximum RAM amount2 GB4 GB
Memory bus width192 Bit256 Bit
Memory clock speed900 MHz800 MHz
Memory bandwidth86.4 GB/s102.4 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsTwo Dual Link DVI, Mini HDMINo outputs
Multi monitor support+no data
HDMI+-
HDCP+-
Maximum VGA resolution2048x1536no data
Display Portno data1.2
Audio input for HDMIInternalno data

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Optimus-+
3D Vision Prono data+
Mosaicno data+
nView Display Managementno data+
Optimusno data+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_0)12
Shader Model5.15.1
OpenGL4.14.5
OpenCL1.11.2
VulkanN/A+
CUDA++

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

GTX 460 5.89
K3100M 5.90
+0.2%

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

GTX 460 2265
K3100M 2267
+0.1%

3DMark Fire Strike Graphics

Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.

GTX 460 2570
K3100M 2797
+8.8%

GeekBench 5 OpenCL

Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses OpenCL API by Khronos Group.

GTX 460 7831
+29%
K3100M 6069

Octane Render OctaneBench

This is a special benchmark measuring graphics card performance in OctaneRender, which is a realistic GPU rendering engine by OTOY Inc., available either as a standalone program, or as a plugin for 3DS Max, Cinema 4D and many other apps. It renders four different static scenes, then compares render times with a reference GPU which is currently GeForce GTX 980. This benchmark has nothing to do with gaming and is aimed at professional 3D graphics artists.

GTX 460 27
+42.1%
K3100M 19

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Average FPS across all PC games

Here are the average frames per second in a large set of popular games across different resolutions:

Full HD30−35
−10%
33
+10%
4K14−16
−14.3%
16
+14.3%

Cost per frame, $

1080p6.63
+813%
60.58
−813%
4K14.21
+779%
124.94
−779%
  • GTX 460 has 813% lower cost per frame in 1080p
  • GTX 460 has 779% lower cost per frame in 4K

FPS performance in popular games

Full HD
Low Preset

Counter-Strike 2 12−14
+0%
12−14
+0%
Cyberpunk 2077 12−14
+0%
12−14
+0%
Elden Ring 14−16
+0%
14−16
+0%

Full HD
Medium Preset

Battlefield 5 18−20
+0%
18−20
+0%
Counter-Strike 2 12−14
+0%
12−14
+0%
Cyberpunk 2077 12−14
+0%
12−14
+0%
Forza Horizon 4 24−27
+0%
24−27
+0%
Metro Exodus 14−16
+0%
14−16
+0%
Red Dead Redemption 2 16−18
+0%
16−18
+0%
Valorant 16−18
+0%
16−18
+0%

Full HD
High Preset

Battlefield 5 18−20
+0%
18−20
+0%
Counter-Strike 2 12−14
+0%
12−14
+0%
Cyberpunk 2077 12−14
+0%
12−14
+0%
Dota 2 20−22
+0%
20−22
+0%
Elden Ring 14−16
+0%
14−16
+0%
Far Cry 5 27−30
+0%
27−30
+0%
Fortnite 35−40
+0%
35−40
+0%
Forza Horizon 4 24−27
+0%
24−27
+0%
Grand Theft Auto V 20−22
+0%
20−22
+0%
Metro Exodus 14−16
+0%
14−16
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 45−50
+0%
45−50
+0%
Red Dead Redemption 2 16−18
+0%
16−18
+0%
The Witcher 3: Wild Hunt 18
+0%
18
+0%
Valorant 16−18
+0%
16−18
+0%
World of Tanks 90−95
+0%
90−95
+0%

Full HD
Ultra Preset

Battlefield 5 18−20
+0%
18−20
+0%
Counter-Strike 2 12−14
+0%
12−14
+0%
Cyberpunk 2077 12−14
+0%
12−14
+0%
Dota 2 20−22
+0%
20−22
+0%
Far Cry 5 27−30
+0%
27−30
+0%
Forza Horizon 4 24−27
+0%
24−27
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 45−50
+0%
45−50
+0%
Valorant 16−18
+0%
16−18
+0%

1440p
High Preset

Dota 2 5−6
+0%
5−6
+0%
Elden Ring 7−8
+0%
7−8
+0%
Grand Theft Auto V 6−7
+0%
6−7
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 35−40
+0%
35−40
+0%
Red Dead Redemption 2 5−6
+0%
5−6
+0%
World of Tanks 40−45
+0%
40−45
+0%

1440p
Ultra Preset

Battlefield 5 10−11
+0%
10−11
+0%
Counter-Strike 2 9−10
+0%
9−10
+0%
Cyberpunk 2077 5−6
+0%
5−6
+0%
Far Cry 5 12−14
+0%
12−14
+0%
Forza Horizon 4 10−11
+0%
10−11
+0%
Metro Exodus 7−8
+0%
7−8
+0%
The Witcher 3: Wild Hunt 7−8
+0%
7−8
+0%
Valorant 16−18
+0%
16−18
+0%

4K
High Preset

Dota 2 16−18
+0%
16−18
+0%
Elden Ring 3−4
+0%
3−4
+0%
Grand Theft Auto V 16−18
+0%
16−18
+0%
Metro Exodus 1−2
+0%
1−2
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 16−18
+0%
16−18
+0%
Red Dead Redemption 2 4−5
+0%
4−5
+0%
The Witcher 3: Wild Hunt 16−18
+0%
16−18
+0%

4K
Ultra Preset

Battlefield 5 5−6
+0%
5−6
+0%
Cyberpunk 2077 2−3
+0%
2−3
+0%
Dota 2 16−18
+0%
16−18
+0%
Far Cry 5 7−8
+0%
7−8
+0%
Fortnite 5−6
+0%
5−6
+0%
Forza Horizon 4 5−6
+0%
5−6
+0%
Valorant 5−6
+0%
5−6
+0%

This is how GTX 460 and K3100M compete in popular games:

  • K3100M is 10% faster in 1080p
  • K3100M is 14% faster in 4K

All in all, in popular games:

  • there's a draw in 61 test (100%)

Pros & cons summary


Performance score 5.89 5.90
Recency 12 July 2010 23 July 2013
Maximum RAM amount 2 GB 4 GB
Chip lithography 40 nm 28 nm
Power consumption (TDP) 160 Watt 75 Watt

K3100M has a 0.2% higher aggregate performance score, an age advantage of 3 years, a 100% higher maximum VRAM amount, a 42.9% more advanced lithography process, and 113.3% lower power consumption.

Given the minimal performance differences, no clear winner can be declared between GeForce GTX 460 and Quadro K3100M.

Be aware that GeForce GTX 460 is a desktop card while Quadro K3100M is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce GTX 460
GeForce GTX 460
NVIDIA Quadro K3100M
Quadro K3100M

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.4 1025 votes

Rate GeForce GTX 460 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4 128 votes

Rate Quadro K3100M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.