HD Graphics P530 vs GeForce GTX 1650 Mobile
Aggregate performance score
We've compared GeForce GTX 1650 Mobile with HD Graphics P530, including specs and performance data.
GTX 1650 Mobile outperforms HD Graphics P530 by a whopping 562% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 300 | 798 |
Place by popularity | 67 | not in top-100 |
Power efficiency | 25.38 | 12.77 |
Architecture | Turing (2018−2022) | Generation 9.0 (2015−2016) |
GPU code name | TU117 | Skylake GT2 |
Market segment | Laptop | Desktop |
Release date | 15 April 2020 (4 years ago) | 1 September 2015 (9 years ago) |
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 1024 | 192 |
Core clock speed | 1380 MHz | 350 MHz |
Boost clock speed | 1560 MHz | 1150 MHz |
Number of transistors | 4,700 million | 189 million |
Manufacturing process technology | 12 nm | 14 nm+ |
Power consumption (TDP) | 50 Watt | 15 Watt |
Texture fill rate | 99.84 | 18.40 |
Floating-point processing power | 3.195 TFLOPS | 0.4416 TFLOPS |
ROPs | 32 | 3 |
TMUs | 64 | 16 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | medium sized | no data |
Interface | PCIe 3.0 x16 | PCIe 3.0 x1 |
Width | no data | IGP |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR6 | DDR3L/LPDDR3/DDR4 |
Maximum RAM amount | 4 GB | 1740 MB |
Memory bus width | 128 Bit | System Shared |
Memory clock speed | 1500 MHz | System Shared |
Memory bandwidth | 192.0 GB/s | no data |
Shared memory | - | + |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | No outputs |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
Quick Sync | no data | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (12_1) | 12 (12_1) |
Shader Model | 6.5 | 6.4 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 2.1 |
Vulkan | 1.2.140 | 1.1.97 |
CUDA | 7.5 | - |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 58
+625%
| 8−9
−625%
|
1440p | 37
+640%
| 5−6
−640%
|
4K | 20
+567%
| 3−4
−567%
|
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 52
+940%
|
5−6
−940%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 55
+511%
|
9−10
−511%
|
Assassin's Creed Valhalla | 42
+4100%
|
1−2
−4100%
|
Battlefield 5 | 81
+1925%
|
4−5
−1925%
|
Call of Duty: Modern Warfare | 51
+629%
|
7−8
−629%
|
Cyberpunk 2077 | 41
+720%
|
5−6
−720%
|
Far Cry 5 | 66
+1220%
|
5−6
−1220%
|
Far Cry New Dawn | 79
+1029%
|
7−8
−1029%
|
Forza Horizon 4 | 166
+1086%
|
14−16
−1086%
|
Hitman 3 | 47
+488%
|
8−9
−488%
|
Horizon Zero Dawn | 164
+681%
|
21−24
−681%
|
Metro Exodus | 82
+2633%
|
3−4
−2633%
|
Red Dead Redemption 2 | 71
+914%
|
7−8
−914%
|
Shadow of the Tomb Raider | 117
+875%
|
12−14
−875%
|
Watch Dogs: Legion | 146
+284%
|
35−40
−284%
|
Full HD
High Preset
Assassin's Creed Odyssey | 80
+789%
|
9−10
−789%
|
Assassin's Creed Valhalla | 24
+2300%
|
1−2
−2300%
|
Battlefield 5 | 70
+1650%
|
4−5
−1650%
|
Call of Duty: Modern Warfare | 47
+571%
|
7−8
−571%
|
Cyberpunk 2077 | 32
+540%
|
5−6
−540%
|
Far Cry 5 | 53
+960%
|
5−6
−960%
|
Far Cry New Dawn | 54
+671%
|
7−8
−671%
|
Forza Horizon 4 | 148
+957%
|
14−16
−957%
|
Hitman 3 | 42
+425%
|
8−9
−425%
|
Horizon Zero Dawn | 148
+605%
|
21−24
−605%
|
Metro Exodus | 68
+2167%
|
3−4
−2167%
|
Red Dead Redemption 2 | 55
+686%
|
7−8
−686%
|
Shadow of the Tomb Raider | 64
+433%
|
12−14
−433%
|
The Witcher 3: Wild Hunt | 40−45
+200%
|
14−16
−200%
|
Watch Dogs: Legion | 141
+271%
|
35−40
−271%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 30
+233%
|
9−10
−233%
|
Assassin's Creed Valhalla | 8
+700%
|
1−2
−700%
|
Call of Duty: Modern Warfare | 34
+386%
|
7−8
−386%
|
Cyberpunk 2077 | 30
+500%
|
5−6
−500%
|
Far Cry 5 | 40
+700%
|
5−6
−700%
|
Forza Horizon 4 | 62
+343%
|
14−16
−343%
|
Hitman 3 | 37
+363%
|
8−9
−363%
|
Horizon Zero Dawn | 57
+171%
|
21−24
−171%
|
Shadow of the Tomb Raider | 55
+358%
|
12−14
−358%
|
The Witcher 3: Wild Hunt | 36
+157%
|
14−16
−157%
|
Watch Dogs: Legion | 17
−124%
|
35−40
+124%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 52
+643%
|
7−8
−643%
|
1440p
High Preset
Battlefield 5 | 43
+760%
|
5−6
−760%
|
Far Cry New Dawn | 34
+750%
|
4−5
−750%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 22
+1000%
|
2−3
−1000%
|
Assassin's Creed Valhalla | 16−18
+700%
|
2−3
−700%
|
Call of Duty: Modern Warfare | 20−22
+900%
|
2−3
−900%
|
Cyberpunk 2077 | 15
+1400%
|
1−2
−1400%
|
Far Cry 5 | 25
+733%
|
3−4
−733%
|
Forza Horizon 4 | 99
+607%
|
14−16
−607%
|
Hitman 3 | 26
+225%
|
8−9
−225%
|
Horizon Zero Dawn | 44
+529%
|
7−8
−529%
|
Metro Exodus | 39
+680%
|
5−6
−680%
|
Shadow of the Tomb Raider | 35−40
+620%
|
5−6
−620%
|
The Witcher 3: Wild Hunt | 21−24
+950%
|
2−3
−950%
|
Watch Dogs: Legion | 115
+619%
|
16−18
−619%
|
1440p
Epic Preset
Red Dead Redemption 2 | 33
+450%
|
6−7
−450%
|
4K
High Preset
Battlefield 5 | 21
+2000%
|
1−2
−2000%
|
Far Cry New Dawn | 17
+750%
|
2−3
−750%
|
Hitman 3 | 14
+600%
|
2−3
−600%
|
Horizon Zero Dawn | 45
+650%
|
6−7
−650%
|
Metro Exodus | 26
+767%
|
3−4
−767%
|
The Witcher 3: Wild Hunt | 21
+600%
|
3−4
−600%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 12
+500%
|
2−3
−500%
|
Assassin's Creed Valhalla | 9−10
+800%
|
1−2
−800%
|
Call of Duty: Modern Warfare | 10−11
+900%
|
1−2
−900%
|
Cyberpunk 2077 | 5 | 0−1 |
Far Cry 5 | 12
+1100%
|
1−2
−1100%
|
Forza Horizon 4 | 24−27 | 0−1 |
Shadow of the Tomb Raider | 20−22
+567%
|
3−4
−567%
|
Watch Dogs: Legion | 8−9 | 0−1 |
4K
Epic Preset
Red Dead Redemption 2 | 17
+325%
|
4−5
−325%
|
This is how GTX 1650 Mobile and HD Graphics P530 compete in popular games:
- GTX 1650 Mobile is 625% faster in 1080p
- GTX 1650 Mobile is 640% faster in 1440p
- GTX 1650 Mobile is 567% faster in 4K
Here's the range of performance differences observed across popular games:
- in Assassin's Creed Valhalla, with 1080p resolution and the Medium Preset, the GTX 1650 Mobile is 4100% faster.
- in Watch Dogs: Legion, with 1080p resolution and the Ultra Preset, the HD Graphics P530 is 124% faster.
All in all, in popular games:
- GTX 1650 Mobile is ahead in 59 tests (98%)
- HD Graphics P530 is ahead in 1 test (2%)
Pros & cons summary
Performance score | 18.48 | 2.79 |
Recency | 15 April 2020 | 1 September 2015 |
Maximum RAM amount | 4 GB | 1740 MB |
Chip lithography | 12 nm | 14 nm |
Power consumption (TDP) | 50 Watt | 15 Watt |
GTX 1650 Mobile has a 562.4% higher aggregate performance score, an age advantage of 4 years, a 135.4% higher maximum VRAM amount, and a 16.7% more advanced lithography process.
HD Graphics P530, on the other hand, has 233.3% lower power consumption.
The GeForce GTX 1650 Mobile is our recommended choice as it beats the HD Graphics P530 in performance tests.
Be aware that GeForce GTX 1650 Mobile is a notebook card while HD Graphics P530 is a desktop one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.