i7-8750H vs Ryzen Threadripper 1950X

VS

Aggregate performance score

Ryzen Threadripper 1950X
2017
16 cores / 32 threads, 180 Watt
17.39
+180%
Core i7-8750H
2018
6 cores / 12 threads, 45 Watt
6.22

Ryzen Threadripper 1950X outperforms Core i7-8750H by a whopping 180% based on our aggregate benchmark results.

Primary details

Comparing Ryzen Threadripper 1950X and Core i7-8750H processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking3581073
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation4.88no data
Market segmentDesktop processorLaptop
SeriesAMD Ryzen ThreadripperIntel Core i7
Power efficiency9.1413.08
Architecture codenameZen (2017−2020)Coffee Lake-H (2018−2019)
Release date10 August 2017 (7 years ago)2 April 2018 (6 years ago)
Launch price (MSRP)$999$395

Cost-effectiveness evaluation

Performance per price, higher is better.

no data

Detailed specifications

Ryzen Threadripper 1950X and Core i7-8750H basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores16 (Hexadeca-Core)6 (Hexa-Core)
Threads3212
Base clock speed3.4 GHz2.2 GHz
Boost clock speed4 GHz4.1 GHz
Bus typeno dataDMI 3.0
Bus rate4 × 8 GT/s4 × 8 GT/s
Multiplier3422
L1 cache96K (per core)64K (per core)
L2 cache512K (per core)256K (per core)
L3 cache32 MB9 MB
Chip lithography14 nm14 nm
Die size213 mm2149 mm2
Maximum core temperature68 °C100 °C
Maximum case temperature (TCase)no data72 °C
Number of transistors9,600 millionno data
64 bit support++
Windows 11 compatibility-+
Unlocked multiplier+-

Compatibility

Information on Ryzen Threadripper 1950X and Core i7-8750H compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1 (Uniprocessor)
SocketSP3r2FCBGA1440
Power consumption (TDP)180 Watt45 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen Threadripper 1950X and Core i7-8750H. You'll probably need this information if you require some particular technology.

Instruction set extensionsSSE4.2, SSE4A, AMD-V, AES, AVX2, FMA3, SHAIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
AVX++
Enhanced SpeedStep (EIST)no data+
Speed Shiftno data+
My WiFino data+
Turbo Boost Technologyno data2.0
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+

Security technologies

Ryzen Threadripper 1950X and Core i7-8750H technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+
Secure Keyno data+
MPX-+
Identity Protection-+
SGXno dataYes with Intel® ME
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen Threadripper 1950X and Core i7-8750H are enumerated here.

AMD-V++
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen Threadripper 1950X and Core i7-8750H. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4 Quad-channelDDR4
Maximum memory size2 TiB64 GB
Max memory channels42
Maximum memory bandwidth85.33 GB/s42.671 GB/s
ECC memory support+-

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card-Intel UHD Graphics 630
Max video memory-64 GB
Quick Sync Video-+
Clear Video-+
Clear Video HD-+
Graphics max frequency-1.1 GHz
InTru 3D-+

Graphics interfaces

Available interfaces and connections of Ryzen Threadripper 1950X and Core i7-8750H integrated GPUs.

Number of displays supported-3
eDP-+
DisplayPort-+
HDMI-+
DVI-+

Graphics image quality

Maximum display resolutions supported by Ryzen Threadripper 1950X and Core i7-8750H integrated GPUs, including resolutions over different interfaces.

4K resolution support-+
Max resolution over HDMI 1.4-4096 x 2304@30Hz
Max resolution over eDP-4096 x 2304@60Hz
Max resolution over DisplayPort-4096 x 2304@60Hz
Max resolution over VGA-N/A

Graphics API support

APIs supported by Ryzen Threadripper 1950X and Core i7-8750H integrated GPUs, sometimes API versions are included.

DirectX-12
OpenGL-4.5

Peripherals

Specifications and connection of peripherals supported by Ryzen Threadripper 1950X and Core i7-8750H.

PCIe version3.03.0
PCI Express lanes6016

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen Threadripper 1950X 17.39
+180%
i7-8750H 6.22

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen Threadripper 1950X 27623
+180%
i7-8750H 9880

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen Threadripper 1950X 1187
i7-8750H 1307
+10.1%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen Threadripper 1950X 8093
+74.3%
i7-8750H 4643

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen Threadripper 1950X 4754
i7-8750H 6471
+36.1%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen Threadripper 1950X 41814
+24.5%
i7-8750H 33595

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen Threadripper 1950X 3.34
+64.1%
i7-8750H 5.48

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen Threadripper 1950X 23
+87.6%
i7-8750H 12

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen Threadripper 1950X 2997
+169%
i7-8750H 1116

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen Threadripper 1950X 159
i7-8750H 173
+8.8%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen Threadripper 1950X 1.73
i7-8750H 1.98
+14.5%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Ryzen Threadripper 1950X 19
+171%
i7-8750H 7

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen Threadripper 1950X 134
+99.9%
i7-8750H 67

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen Threadripper 1950X 190
i7-8750H 200
+5.6%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Ryzen Threadripper 1950X 4150
i7-8750H 5310
+28%

Geekbench 5.5 Multi-Core

Ryzen Threadripper 1950X 11237
+133%
i7-8750H 4820

Blender(-)

Ryzen Threadripper 1950X 163
i7-8750H 469
+188%

Geekbench 5.5 Single-Core

Ryzen Threadripper 1950X 1029
i7-8750H 1050
+2%

Gaming performance

Pros & cons summary


Performance score 17.39 6.22
Recency 10 August 2017 2 April 2018
Physical cores 16 6
Threads 32 12
Power consumption (TDP) 180 Watt 45 Watt

Ryzen Threadripper 1950X has a 179.6% higher aggregate performance score, and 166.7% more physical cores and 166.7% more threads.

i7-8750H, on the other hand, has an age advantage of 7 months, and 300% lower power consumption.

The Ryzen Threadripper 1950X is our recommended choice as it beats the Core i7-8750H in performance tests.

Note that Ryzen Threadripper 1950X is a desktop processor while Core i7-8750H is a notebook one.


Should you still have questions on choice between Ryzen Threadripper 1950X and Core i7-8750H, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen Threadripper 1950X
Ryzen Threadripper 1950X
Intel Core i7-8750H
Core i7-8750H

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.9 155 votes

Rate Ryzen Threadripper 1950X on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.2 1191 vote

Rate Core i7-8750H on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen Threadripper 1950X or Core i7-8750H, agree or disagree with our judgements, or report an error or mismatch.