i5-10400F vs Ryzen 7 8700G

VS

Aggregate performance score

Ryzen 7 8700G
2024
8 cores / 16 threads, 65 Watt
20.00
+144%
Core i5-10400F
2020
6 cores / 12 threads, 65 Watt
8.20

Ryzen 7 8700G outperforms Core i5-10400F by a whopping 144% based on our aggregate benchmark results.

Primary details

Comparing Ryzen 7 8700G and Core i5-10400F processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking284926
Place by popularitynot in top-1009
Cost-effectiveness evaluation47.2423.92
Market segmentDesktop processorDesktop processor
Power efficiency29.1011.93
Architecture codenamePhoenix (2023−2024)Comet Lake (2020)
Release date8 January 2024 (less than a year ago)30 April 2020 (4 years ago)
Launch price (MSRP)$329$155

Cost-effectiveness evaluation

Performance per price, higher is better.

Ryzen 7 8700G has 97% better value for money than i5-10400F.

Detailed specifications

Ryzen 7 8700G and Core i5-10400F basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores8 (Octa-Core)6 (Hexa-Core)
Threads1612
Base clock speed4.2 GHz2.9 GHz
Boost clock speed5.1 GHz4.3 GHz
Bus rateno data8 GT/s
L1 cache64 KB (per core)64K (per core)
L2 cache1 MB (per core)256K (per core)
L3 cache16 MB (shared)12 MB (shared)
Chip lithography4 nm14 nm
Die size178 mm2no data
Maximum core temperature95 °C100 °C
Maximum case temperature (TCase)no data72 °C
Number of transistors25,000 millionno data
64 bit support++
Windows 11 compatibilityno data+
Unlocked multiplier+-

Compatibility

Information on Ryzen 7 8700G and Core i5-10400F compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11
SocketAM5FCLGA1200
Power consumption (TDP)65 Watt65 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen 7 8700G and Core i5-10400F. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX, SSE, SSE2, SSE3, SSSE3, SSE4A, SSE4.1, SSE4.2, AES, AVX, AVX2, AVX-512, BMI1, BMI2, SHA, F16C, FMA3, NX-Bit, AMD64, EVP, AMD-V, SMAP, SMEP, SMT, Precision Boost 2, XDNA2Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
AVX++
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data2.0
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Turbo Boost Max 3.0no data-
Precision Boost 2+no data

Security technologies

Ryzen 7 8700G and Core i5-10400F technologies aimed at improving security, for example, by protecting against hacks.

TXTno data+
EDBno data+
Secure Keyno data+
Identity Protection-+
SGXno dataYes with Intel® ME
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen 7 8700G and Core i5-10400F are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen 7 8700G and Core i5-10400F. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR5DDR4
Maximum memory sizeno data128 GB
Max memory channelsno data2
Maximum memory bandwidthno data41.6 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics cardAMD Radeon 780Mno data

Peripherals

Specifications and connection of peripherals supported by Ryzen 7 8700G and Core i5-10400F.

PCIe version4.03.0
PCI Express lanes2016

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen 7 8700G 20.00
+144%
i5-10400F 8.20

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen 7 8700G 31772
+144%
i5-10400F 13029

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen 7 8700G 2666
+83.2%
i5-10400F 1455

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen 7 8700G 13764
+138%
i5-10400F 5777

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen 7 8700G 7759
+15.5%
i5-10400F 6719

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen 7 8700G 50560
+38.3%
i5-10400F 36564

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen 7 8700G 2.54
+146%
i5-10400F 6.25

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen 7 8700G 31
+117%
i5-10400F 14

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen 7 8700G 2693
+102%
i5-10400F 1332

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen 7 8700G 286
+58.9%
i5-10400F 180

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen 7 8700G 3.4
+67.5%
i5-10400F 2.03

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen 7 8700G 156
+91.8%
i5-10400F 81

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen 7 8700G 331
+44.6%
i5-10400F 229

Geekbench 5.5 Multi-Core

Ryzen 7 8700G 12618
+98.2%
i5-10400F 6365

Blender(-)

Ryzen 7 8700G 186
i5-10400F 332
+78.7%

Geekbench 5.5 Single-Core

Ryzen 7 8700G 2012
+64.9%
i5-10400F 1220

7-Zip Single

Ryzen 7 8700G 6665
+31.6%
i5-10400F 5064

7-Zip

Ryzen 7 8700G 75427
+105%
i5-10400F 36731

WebXPRT 3

Ryzen 7 8700G 336
+56.3%
i5-10400F 215

Gaming performance

Pros & cons summary


Performance score 20.00 8.20
Recency 8 January 2024 30 April 2020
Physical cores 8 6
Threads 16 12
Chip lithography 4 nm 14 nm

Ryzen 7 8700G has a 143.9% higher aggregate performance score, an age advantage of 3 years, 33.3% more physical cores and 33.3% more threads, and a 250% more advanced lithography process.

The Ryzen 7 8700G is our recommended choice as it beats the Core i5-10400F in performance tests.


Should you still have questions on choice between Ryzen 7 8700G and Core i5-10400F, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen 7 8700G
Ryzen 7 8700G
Intel Core i5-10400F
Core i5-10400F

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


4.2 259 votes

Rate Ryzen 7 8700G on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.8 13786 votes

Rate Core i5-10400F on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen 7 8700G or Core i5-10400F, agree or disagree with our judgements, or report an error or mismatch.