i5-13400F vs Ryzen 7 1700

VS

Aggregate performance score

Ryzen 7 1700
2017
8 cores / 16 threads, 65 Watt
9.36
Core i5-13400F
2023
10 cores / 16 threads, 65 Watt
15.90
+69.9%

Core i5-13400F outperforms Ryzen 7 1700 by an impressive 70% based on our aggregate benchmark results.

Primary details

Comparing Ryzen 7 1700 and Core i5-13400F processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking816421
Place by popularitynot in top-10043
Cost-effectiveness evaluation3.8555.17
Market segmentDesktop processorDesktop processor
SeriesAMD Ryzen 7no data
Power efficiency13.5723.05
Architecture codenameZen (2017−2020)Raptor Lake-S (2023−2024)
Release date22 February 2017 (7 years ago)4 January 2023 (1 year ago)
Launch price (MSRP)$329$196

Cost-effectiveness evaluation

Performance per price, higher is better.

i5-13400F has 1333% better value for money than Ryzen 7 1700.

Detailed specifications

Ryzen 7 1700 and Core i5-13400F basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores8 (Octa-Core)10 (Deca-Core)
Threads1616
Base clock speed3 GHz2.5 GHz
Boost clock speed3.7 GHz4.6 GHz
Bus rate4 × 8 GT/sno data
Multiplier30no data
L1 cache768 KB80K (per core)
L2 cache4096 KB1.25 MB (per core)
L3 cache16384 KB20 MB (shared)
Chip lithography14 nmIntel 7 nm
Die size213 mm2257 mm2
Maximum core temperatureno data100 °C
Maximum case temperature (TCase)no data72 °C
Number of transistors4800 Millionno data
64 bit support++
Windows 11 compatibility-+
Unlocked multiplier+-

Compatibility

Information on Ryzen 7 1700 and Core i5-13400F compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1
SocketAM4FCLGA1700
Power consumption (TDP)65 Watt65 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen 7 1700 and Core i5-13400F. You'll probably need this information if you require some particular technology.

Instruction set extensionsXFR, FMA3, SSE 4.2, AVX2, SMTIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
FMAFMA3-
AVX++
Enhanced SpeedStep (EIST)no data+
Speed Shiftno data+
Turbo Boost Technologyno data2.0
Hyper-Threading Technologyno data+
TSX-+
Idle Statesno data+
Thermal Monitoring-+
Turbo Boost Max 3.0no data-
SenseMI+-
Deep Learning Boost-+

Security technologies

Ryzen 7 1700 and Core i5-13400F technologies aimed at improving security, for example, by protecting against hacks.

TXTno data+
EDBno data+
Secure Keyno data+
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen 7 1700 and Core i5-13400F are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen 7 1700 and Core i5-13400F. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4DDR5, DDR4
Maximum memory size64 GB192 GB
Max memory channels22
Maximum memory bandwidth42.671 GB/s76.8 GB/s
ECC memory support+-

Peripherals

Specifications and connection of peripherals supported by Ryzen 7 1700 and Core i5-13400F.

PCIe versionn/a5.0 and 4.0
PCI Express lanes2016

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen 7 1700 9.36
i5-13400F 15.90
+69.9%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen 7 1700 14816
i5-13400F 25164
+69.8%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen 7 1700 1027
i5-13400F 2299
+124%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen 7 1700 5220
i5-13400F 10924
+109%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen 7 1700 4419
i5-13400F 8689
+96.6%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen 7 1700 29330
i5-13400F 51113
+74.3%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

Ryzen 7 1700 8335
i5-13400F 13989
+67.8%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen 7 1700 6
i5-13400F 3.27
+83.5%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen 7 1700 16
i5-13400F 27
+74.9%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen 7 1700 1414
i5-13400F 2364
+67.2%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen 7 1700 147
i5-13400F 252
+71.4%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen 7 1700 1.66
i5-13400F 3.06
+84.3%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Ryzen 7 1700 7.2
i5-13400F 12.2
+69.4%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen 7 1700 74
i5-13400F 137
+83.9%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen 7 1700 154
i5-13400F 315
+104%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Ryzen 7 1700 3447
i5-13400F 8602
+150%

Gaming performance

Pros & cons summary


Performance score 9.36 15.90
Recency 22 February 2017 4 January 2023
Physical cores 8 10

i5-13400F has a 69.9% higher aggregate performance score, an age advantage of 5 years, and 25% more physical cores.

The Core i5-13400F is our recommended choice as it beats the Ryzen 7 1700 in performance tests.


Should you still have questions on choice between Ryzen 7 1700 and Core i5-13400F, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen 7 1700
Ryzen 7 1700
Intel Core i5-13400F
Core i5-13400F

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


4.2 1524 votes

Rate Ryzen 7 1700 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.1 3137 votes

Rate Core i5-13400F on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen 7 1700 or Core i5-13400F, agree or disagree with our judgements, or report an error or mismatch.