Celeron N4120 vs m3-6Y30

#ad 
Buy on Amazon
VS

Aggregate performance score

Core m3-6Y30
2015
2 cores / 4 threads, 4 Watt
1.37
Celeron N4120
2019
4 cores / 4 threads, 6 Watt
1.57
+14.6%

Celeron N4120 outperforms Core m3-6Y30 by a moderate 15% based on our aggregate benchmark results.

Primary details

Comparing Core m3-6Y30 and Celeron N4120 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking22472121
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesIntel Core m3Intel Gemini Lake
Power efficiency25.9524.78
Architecture codenameSkylake-Y (2015)Gemini Lake Refresh (2019)
Release date1 September 2015 (9 years ago)4 November 2019 (5 years ago)
Launch price (MSRP)$281no data

Detailed specifications

Core m3-6Y30 and Celeron N4120 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)4 (Quad-Core)
Threads44
Base clock speed0.9 GHz1.1 GHz
Boost clock speed2.2 GHz2.6 GHz
Bus typeDMI 3.0no data
Bus rate4 GT/sno data
Multiplier9no data
L1 cache64 KB (per core)no data
L2 cache256 KB (per core)4 MB
L3 cache4 MB (shared)4 MB
Chip lithography14 nm14 nm
Die size98.57 mm2no data
Maximum core temperature100 °C105 °C
Number of transistors1750 Millionno data
64 bit support++
Windows 11 compatibility-+

Compatibility

Information on Core m3-6Y30 and Celeron N4120 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1
SocketFCBGA1515FCBGA1090
Power consumption (TDP)4.5 Watt6 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Core m3-6Y30 and Celeron N4120. You'll probably need this information if you require some particular technology.

Instruction set extensionsIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2Intel® SSE4.2
AES-NI++
AVX+-
Enhanced SpeedStep (EIST)++
Speed Shiftno data-
My WiFi+no data
Turbo Boost Technology2.0-
Hyper-Threading Technology+-
Idle States++
Thermal Monitoring++
Flex Memory Access+no data
Smart Response+-
GPIOno data+
Turbo Boost Max 3.0no data-

Security technologies

Core m3-6Y30 and Celeron N4120 technologies aimed at improving security, for example, by protecting against hacks.

TXT-no data
EDB++
Secure Key++
MPX++
Identity Protection-+
SGXYes with Intel® MEYes with Intel® ME
OS Guard++
Anti-Theftno data-

Virtualization technologies

Virtual machine speed-up technologies supported by Core m3-6Y30 and Celeron N4120 are enumerated here.

AMD-V+-
VT-d++
VT-x++
EPT++

Memory specs

Types, maximum amount and channel quantity of RAM supported by Core m3-6Y30 and Celeron N4120. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3DDR4
Maximum memory size16 GB8 GB
Max memory channels22
Maximum memory bandwidth29.861 GB/sno data

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
Intel HD Graphics 515Intel UHD Graphics 600
Max video memory16 GB8 GB
Quick Sync Video++
Clear Video+no data
Clear Video HD+no data
Graphics max frequency850 MHz700 MHz
Execution Unitsno data12
InTru 3D+no data

Graphics interfaces

Available interfaces and connections of Core m3-6Y30 and Celeron N4120 integrated GPUs.

Number of displays supported33
eDP++
DisplayPort++
HDMI++
DVI+no data
MIPI-DSIno data+

Graphics image quality

Maximum display resolutions supported by Core m3-6Y30 and Celeron N4120 integrated GPUs, including resolutions over different interfaces.

4K resolution support++
Max resolution over HDMI 1.44096x2304@24Hz4096x2160@30Hz
Max resolution over eDP3840x2160@60Hz4096x2160@60Hz
Max resolution over DisplayPort3840x2160@60Hz4096x2160@60Hz
Max resolution over VGAN/Ano data

Graphics API support

APIs supported by Core m3-6Y30 and Celeron N4120 integrated GPUs, sometimes API versions are included.

DirectX1212
OpenGL4.54.4

Peripherals

Specifications and connection of peripherals supported by Core m3-6Y30 and Celeron N4120.

PCIe version3.02.0
PCI Express lanes106
USB revisionno data2.0/3.0
Total number of SATA portsno data2
Max number of SATA 6 Gb/s Portsno data2
Number of USB portsno data8
Integrated LANno data-
UARTno data+

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

m3-6Y30 1.37
Celeron N4120 1.57
+14.6%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

m3-6Y30 2176
Celeron N4120 2486
+14.2%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

m3-6Y30 3388
+56.9%
Celeron N4120 2159

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

m3-6Y30 7158
+11.3%
Celeron N4120 6432

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

m3-6Y30 2780
Celeron N4120 3403
+22.4%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

m3-6Y30 24.1
Celeron N4120 17.56
+37.2%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

m3-6Y30 2
Celeron N4120 3
+17.5%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

m3-6Y30 204
Celeron N4120 224
+9.8%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

m3-6Y30 86
+16.8%
Celeron N4120 73

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

m3-6Y30 0.99
+12.5%
Celeron N4120 0.88

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

m3-6Y30 1.2
Celeron N4120 1.8
+50%

Gaming performance

Pros & cons summary


Performance score 1.37 1.57
Integrated graphics card 1.65 0.87
Recency 1 September 2015 4 November 2019
Physical cores 2 4
Power consumption (TDP) 4 Watt 6 Watt

m3-6Y30 has 89.7% faster integrated GPU, and 50% lower power consumption.

Celeron N4120, on the other hand, has a 14.6% higher aggregate performance score, an age advantage of 4 years, and 100% more physical cores.

The Celeron N4120 is our recommended choice as it beats the Core m3-6Y30 in performance tests.


Should you still have questions on choice between Core m3-6Y30 and Celeron N4120, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


Intel Core m3-6Y30
Core m3-6Y30
Intel Celeron N4120
Celeron N4120

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.6 73 votes

Rate Core m3-6Y30 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.4 517 votes

Rate Celeron N4120 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Core m3-6Y30 or Celeron N4120, agree or disagree with our judgements, or report an error or mismatch.