Celeron N4500 vs N2815

Primary details

Comparing Celeron N2815 and Celeron N4500 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the rankingnot rated2303
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesIntel Celeronno data
Power efficiencyno data19.56
Architecture codenameBay Trail-M (2013−2014)Jasper Lake (2021)
Release date1 December 2013 (10 years ago)11 January 2021 (3 years ago)
Launch price (MSRP)$107no data

Detailed specifications

Celeron N2815 and Celeron N4500 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)2 (Dual-core)
Threads22
Base clock speed1.86 GHz1.1 GHz
Boost clock speed2.13 GHz2.8 GHz
L1 cache112 KBno data
L2 cache1 MB1.5 MB
L3 cache1 MB4 MB
Chip lithography22 nm10 nm
Maximum core temperature105 °C105 °C
64 bit support++
Windows 11 compatibility-+

Compatibility

Information on Celeron N2815 and Celeron N4500 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configurationno data1
SocketFCBGA1170FCBGA1338
Power consumption (TDP)7.5 Watt6 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Celeron N2815 and Celeron N4500. You'll probably need this information if you require some particular technology.

Instruction set extensionsno dataIntel® SSE4.2
AES-NI-+
Enhanced SpeedStep (EIST)++
Speed Shiftno data+
Turbo Boost Technology--
Hyper-Threading Technology--
Idle States++
Thermal Monitoring-+
Smart Responseno data-
GPIOno data+
Smart Connect+no data
Turbo Boost Max 3.0no data-
RST-no data

Security technologies

Celeron N2815 and Celeron N4500 technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDB+no data
Identity Protection-+
SGXno data-
OS Guardno data+
Anti-Theft-no data

Virtualization technologies

Virtual machine speed-up technologies supported by Celeron N2815 and Celeron N4500 are enumerated here.

VT-d-+
VT-x++
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Celeron N2815 and Celeron N4500. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3L-1066DDR4
Maximum memory size8 GB16 GB
Max memory channels22

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics cardIntel® HD Graphics for Intel Atom® Processor Z3700 SeriesIntel UHD Graphics
Quick Sync Video-+
Graphics max frequency756 MHz750 MHz
Execution Unitsno data16

Graphics interfaces

Available interfaces and connections of Celeron N2815 and Celeron N4500 integrated GPUs.

Number of displays supported23
eDPno data+
DisplayPort-+
HDMI-+
MIPI-DSIno data+

Graphics image quality

Maximum display resolutions supported by Celeron N2815 and Celeron N4500 integrated GPUs, including resolutions over different interfaces.

4K resolution supportno data+
Max resolution over HDMI 1.4no data4096x2160@60Hz
Max resolution over eDPno data4096x2160@60Hz
Max resolution over DisplayPortno data4096x2160@60Hz

Graphics API support

APIs supported by Celeron N2815 and Celeron N4500 integrated GPUs, sometimes API versions are included.

DirectXno data12
OpenGLno data4.5

Peripherals

Specifications and connection of peripherals supported by Celeron N2815 and Celeron N4500.

PCIe version2.0no data
PCI Express lanes48
USB revision3.0 and 2.02.0/3.2
Total number of SATA ports2no data
Max number of SATA 6 Gb/s Portsno data2
Number of USB ports514
Integrated LANno data-
UARTno data+

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.



Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Celeron N2815 492
Celeron N4500 1964
+299%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Celeron N2815 151
Celeron N4500 439
+191%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Celeron N2815 251
Celeron N4500 711
+183%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Celeron N2815 57.8
Celeron N4500 50.2
+15.1%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Celeron N2815 1
Celeron N4500 2
+204%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Celeron N2815 56
Celeron N4500 171
+208%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Celeron N2815 33
Celeron N4500 82
+152%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Celeron N2815 0.36
Celeron N4500 1.04
+189%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Celeron N2815 0.1
Celeron N4500 1.1
+1000%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Celeron N2815 5
Celeron N4500 12
+165%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Celeron N2815 24
Celeron N4500 61
+151%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Celeron N2815 594
Celeron N4500 1076
+81.1%

Pros & cons summary


Recency 1 December 2013 11 January 2021
Chip lithography 22 nm 10 nm
Power consumption (TDP) 7 Watt 6 Watt

Celeron N4500 has an age advantage of 7 years, a 120% more advanced lithography process, and 16.7% lower power consumption.

We couldn't decide between Celeron N2815 and Celeron N4500. We've got no test results to judge.


Should you still have questions on choice between Celeron N2815 and Celeron N4500, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


Intel Celeron N2815
Celeron N2815
Intel Celeron N4500
Celeron N4500

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.2 40 votes

Rate Celeron N2815 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.2 728 votes

Rate Celeron N4500 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Celeron N2815 or Celeron N4500, agree or disagree with our judgements, or report an error or mismatch.