A6-7310 vs Celeron J4115

VS

Aggregate performance score

Celeron J4115
2019
4 cores / 4 threads, 10 Watt
1.76

Primary details

Comparing Celeron J4115 and A6-7310 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking20442043
Place by popularitynot in top-100not in top-100
Market segmentDesktop processorLaptop
SeriesIntel Gemini LakeAMD A-Series
Power efficiency16.056.42
Architecture codenameGemini Lake (2019)Carrizo-L (2015)
Release date4 November 2019 (5 years ago)7 May 2015 (9 years ago)

Detailed specifications

Celeron J4115 and A6-7310 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)4 (Quad-Core)
Threads44
Base clock speed1.8 GHz2 GHz
Boost clock speed2.5 GHz2.4 GHz
L2 cache4 MB2048 KB
L3 cache4 MBno data
Chip lithography14 nm28 nm
Maximum core temperature105 °C90 °C
Number of transistorsno data930 Million
64 bit support++
Windows 11 compatibility+-

Compatibility

Information on Celeron J4115 and A6-7310 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1no data
SocketFCBGA1090FP4
Power consumption (TDP)10 Watt12-25 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Celeron J4115 and A6-7310. You'll probably need this information if you require some particular technology.

Instruction set extensionsIntel® SSE4.2MMX, SSE4.2, AES, AVX, BMI1, F16C, AMD64, VT
AES-NI++
FMA-FMA4
AVX-+
PowerNow-+
PowerGating-+
VirusProtect-+
vPro-no data
Enhanced SpeedStep (EIST)+no data
Speed Shift-no data
Turbo Boost Technology-no data
Hyper-Threading Technology-no data
Idle States+no data
Thermal Monitoring+-
Smart Response-no data
GPIO+no data
Turbo Boost Max 3.0-no data

Security technologies

Celeron J4115 and A6-7310 technologies aimed at improving security, for example, by protecting against hacks.

EDB+no data
Secure Key+no data
MPX+-
Identity Protection+-
SGXYes with Intel® MEno data
OS Guard+no data
Anti-Theft-no data

Virtualization technologies

Virtual machine speed-up technologies supported by Celeron J4115 and A6-7310 are enumerated here.

AMD-V-+
VT-d+no data
VT-x+no data
EPT+no data
IOMMU 2.0-+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Celeron J4115 and A6-7310. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4DDR3L-1866
Maximum memory size8 GBno data
Max memory channels21

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
Intel UHD Graphics 600AMD Radeon R4 Graphics
Max video memory8 GBno data
Quick Sync Video+-
Enduro-+
Switchable graphics-+
UVD-+
VCE-+
Graphics max frequency750 MHzno data
Execution Units12no data

Graphics interfaces

Available interfaces and connections of Celeron J4115 and A6-7310 integrated GPUs.

Number of displays supported3no data
eDP+no data
DisplayPort++
HDMI++
MIPI-DSI+no data

Graphics image quality

Maximum display resolutions supported by Celeron J4115 and A6-7310 integrated GPUs, including resolutions over different interfaces.

4K resolution support+no data

Graphics API support

APIs supported by Celeron J4115 and A6-7310 integrated GPUs, sometimes API versions are included.

DirectX12DirectX® 12
OpenGL4.4no data
Vulkan-+

Peripherals

Specifications and connection of peripherals supported by Celeron J4115 and A6-7310.

PCIe version2.02.0
PCI Express lanes6no data
USB revision2.0/3.0no data
Total number of SATA ports2no data
Max number of SATA 6 Gb/s Ports2no data
Number of USB ports8no data
Integrated LAN-no data
UART+no data

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Celeron J4115 1.76
A6-7310 1.76

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Celeron J4115 2687
A6-7310 2689
+0.1%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Celeron J4115 2087
+15.9%
A6-7310 1801

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Celeron J4115 7426
+46.3%
A6-7310 5075

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Celeron J4115 3
+60.8%
A6-7310 2

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Celeron J4115 244
+75.5%
A6-7310 139

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Celeron J4115 71
+58.7%
A6-7310 45

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Celeron J4115 0.83
+43.1%
A6-7310 0.58

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Celeron J4115 1.7
+70%
A6-7310 1

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Celeron J4115 18
+50.9%
A6-7310 12

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Celeron J4115 76
+43.7%
A6-7310 53

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Celeron J4115 1203
+2.3%
A6-7310 1176

Gaming performance

Pros & cons summary


Recency 4 November 2019 7 May 2015
Chip lithography 14 nm 28 nm
Power consumption (TDP) 10 Watt 12 Watt

Celeron J4115 has an age advantage of 4 years, a 100% more advanced lithography process, and 20% lower power consumption.

Given the minimal performance differences, no clear winner can be declared between Celeron J4115 and A6-7310.

Note that Celeron J4115 is a desktop processor while A6-7310 is a notebook one.


Should you still have questions on choice between Celeron J4115 and A6-7310, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


Intel Celeron J4115
Celeron J4115
AMD A6-7310
A6-7310

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.7 134 votes

Rate Celeron J4115 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.3 500 votes

Rate A6-7310 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Celeron J4115 or A6-7310, agree or disagree with our judgements, or report an error or mismatch.