E1-1200 vs Celeron 1000M

VS

Aggregate performance score

Celeron 1000M
2013
2 cores / 2 threads, 35 Watt
0.67
+179%
E1-1200
2012
2 cores / 2 threads, 18 Watt
0.24

Celeron 1000M outperforms E1-1200 by a whopping 179% based on our aggregate benchmark results.

Primary details

Comparing Celeron 1000M and E1-1200 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking27483180
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesIntel CeleronAMD E-Series
Power efficiency1.811.26
Architecture codenameIvy Bridge (2012−2013)Zacate (2011−2013)
Release date20 January 2013 (11 years ago)6 June 2012 (12 years ago)
Launch price (MSRP)$86no data

Detailed specifications

Celeron 1000M and E1-1200 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)2 (Dual-core)
Threads22
Boost clock speed1.8 GHz1.4 GHz
Bus rate5 GT/sno data
L1 cache64K (per core)64K (per core)
L2 cache256K (per core)512K (per core)
L3 cache2 MB (shared)0 KB
Chip lithography22 nm40 nm
Die size118 mm275 mm2
Maximum core temperature105 °Cno data
Maximum case temperature (TCase)105 °C100 °C
Number of transistors1,400 millionno data
64 bit support++
Windows 11 compatibility--

Compatibility

Information on Celeron 1000M and E1-1200 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11
SocketG2 (988B)FT1
Power consumption (TDP)35 Watt18 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Celeron 1000M and E1-1200. You'll probably need this information if you require some particular technology.

Instruction set extensionsno dataMMX (+), SSE, SSE2, SSE3, SSSE3, SSE4A
PowerNow-+
Enhanced SpeedStep (EIST)+no data
Thermal Monitoring+-

Security technologies

Celeron 1000M and E1-1200 technologies aimed at improving security, for example, by protecting against hacks.

EDB+no data

Virtualization technologies

Virtual machine speed-up technologies supported by Celeron 1000M and E1-1200 are enumerated here.

AMD-V-+
VT-x+no data

Memory specs

Types, maximum amount and channel quantity of RAM supported by Celeron 1000M and E1-1200. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3DDR3

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
Intel HD Graphics (Ivy Bridge) (650 - 1000 MHz)AMD Radeon HD 7310

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Celeron 1000M 0.67
+179%
E1-1200 0.24

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Celeron 1000M 1069
+181%
E1-1200 380

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Celeron 1000M 296
+215%
E1-1200 94

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Celeron 1000M 509
+212%
E1-1200 163

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Celeron 1000M 2480
+172%
E1-1200 912

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Celeron 1000M 4757
+183%
E1-1200 1682

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

Celeron 1000M 1923
+120%
E1-1200 874

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Celeron 1000M 41.63
+82.6%
E1-1200 76

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Celeron 1000M 1
+175%
E1-1200 1

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Celeron 1000M 0.74
+174%
E1-1200 0.27

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Celeron 1000M 1285
+208%
E1-1200 418

Geekbench 2

Celeron 1000M 3405
+136%
E1-1200 1440

Gaming performance

Pros & cons summary


Performance score 0.67 0.24
Integrated graphics card 0.63 0.33
Recency 20 January 2013 6 June 2012
Chip lithography 22 nm 40 nm
Power consumption (TDP) 35 Watt 18 Watt

Celeron 1000M has a 179.2% higher aggregate performance score, 90.9% faster integrated GPU, an age advantage of 7 months, and a 81.8% more advanced lithography process.

E1-1200, on the other hand, has 94.4% lower power consumption.

The Celeron 1000M is our recommended choice as it beats the E1-1200 in performance tests.


Should you still have questions on choice between Celeron 1000M and E1-1200, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


Intel Celeron 1000M
Celeron 1000M
AMD E1-1200
E1-1200

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


2.8 166 votes

Rate Celeron 1000M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.4 293 votes

Rate E1-1200 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Celeron 1000M or E1-1200, agree or disagree with our judgements, or report an error or mismatch.