Celeron 847 vs C-70

#ad 
Buy on Amazon
VS

Primary details

Comparing C-70 and Celeron 847 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the rankingnot ratednot rated
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD C-SeriesIntel Celeron
Architecture codenameOntario (2011−2012)Sandy Bridge (2011−2013)
Release date1 September 2012 (12 years ago)19 June 2011 (13 years ago)
Launch price (MSRP)no data$134

Detailed specifications

C-70 and Celeron 847 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)2 (Dual-core)
Threads22
Base clock speed1 GHz1.1 GHz
Boost clock speed1.33 GHz1.1 GHz
Bus typeno dataDMI 2.0
Bus rateno data4 × 5 GT/s
Multiplierno data11
L1 cache64K (per core)64K (per core)
L2 cache512K (per core)256K (per core)
L3 cache0 KB2 MB (shared)
Chip lithography40 nm32 nm
Die size75 mm2131 mm2
Maximum core temperatureno data100 °C
Number of transistorsno data504 million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on C-70 and Celeron 847 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11 (Uniprocessor)
SocketFT1 BGA 413-BallFCBGA1023
Power consumption (TDP)9 Watt17 Watt

Technologies and extensions

Technological solutions and additional instructions supported by C-70 and Celeron 847. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX(+), SSE(1,2,3,3S,4A), AMD-V, Radeon HD 6290 (276-400 MHz)Intel® SSE4.1, Intel® SSE4.2
FMA-+
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data-
Hyper-Threading Technologyno data-
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
Demand Based Switchingno data-
FDIno data+
Fast Memory Accessno data+

Security technologies

C-70 and Celeron 847 technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+

Virtualization technologies

Virtual machine speed-up technologies supported by C-70 and Celeron 847 are enumerated here.

AMD-V+-
VT-dno data-
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by C-70 and Celeron 847. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3 Single-channelDDR3
Maximum memory sizeno data16 GB
Max memory channelsno data2
Maximum memory bandwidthno data21.335 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon HD 6290Intel HD Graphics (Sandy Bridge)
Graphics max frequencyno data800 MHz

Graphics interfaces

Available interfaces and connections of C-70 and Celeron 847 integrated GPUs.

Number of displays supportedno data2
eDPno data+
DisplayPort-+
HDMI-+
SDVOno data+
CRTno data+

Peripherals

Specifications and connection of peripherals supported by C-70 and Celeron 847.

PCIe versionno data2.0
PCI Express lanesno data16

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.



Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

C-70 315
Celeron 847 478
+51.7%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

C-70 99
Celeron 847 157
+58.6%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

C-70 171
Celeron 847 262
+53.2%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

C-70 798
Celeron 847 1270
+59.1%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

C-70 1495
Celeron 847 2408
+61%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

C-70 782
Celeron 847 993
+26.9%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

C-70 98.2
Celeron 847 80.4
+22.1%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

C-70 0
Celeron 847 1
+75.7%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

C-70 0.23
Celeron 847 0.41
+78.3%

Geekbench 2

C-70 1257
Celeron 847 2014
+60.2%

Pros & cons summary


Recency 1 September 2012 19 June 2011
Chip lithography 40 nm 32 nm
Power consumption (TDP) 9 Watt 17 Watt

C-70 has an age advantage of 1 year, and 88.9% lower power consumption.

Celeron 847, on the other hand, has a 25% more advanced lithography process.

We couldn't decide between C-70 and Celeron 847. We've got no test results to judge.


Should you still have questions on choice between C-70 and Celeron 847, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD C-70
C-70
Intel Celeron 847
Celeron 847

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


2.5 96 votes

Rate C-70 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.8 384 votes

Rate Celeron 847 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about C-70 or Celeron 847, agree or disagree with our judgements, or report an error or mismatch.