i7-2637M vs A8-6410

VS

Aggregate performance score

A8-6410
2014
4 cores / 4 threads, 15 Watt
1.11
Core i7-2637M
2011
2 cores / 4 threads, 17 Watt
1.17
+5.4%

Core i7-2637M outperforms A8-6410 by a small 5% based on our aggregate benchmark results.

Primary details

Comparing A8-6410 and Core i7-2637M processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking24152373
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Core i7
Power efficiency7.056.56
Architecture codenameBeema (2014)Sandy Bridge (2011−2013)
Release date1 June 2014 (10 years ago)3 January 2011 (14 years ago)
Launch price (MSRP)no data$289

Detailed specifications

A8-6410 and Core i7-2637M basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads44
Base clock speed2 GHz1.7 GHz
Boost clock speed2.4 GHz2.8 GHz
Bus typeno dataDMI 2.0
Bus rateno data4 × 5 GT/s
Multiplierno data17
L1 cacheno data128 KB
L2 cache2048 KB512 KB
L3 cacheno data4 MB
Chip lithography28 nm32 nm
Die sizeno data149 mm2
Maximum core temperature90 °C100 °C
Number of transistors930 Million624 Million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A8-6410 and Core i7-2637M compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configurationno data1 (Uniprocessor)
SocketFT3bFCBGA1023
Power consumption (TDP)15 Watt17 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A8-6410 and Core i7-2637M. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX, SSE4.2, AES, AVX, BMI1, F16C, AMD64, VTIntel® AVX
AES-NI++
FMAFMA4+
AVX++
PowerNow+-
PowerGating+-
VirusProtect+-
vProno data+
Enhanced SpeedStep (EIST)no data+
My WiFino data+
Turbo Boost Technologyno data+
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
Demand Based Switchingno data-
FDIno data+
Fast Memory Accessno data+

Security technologies

A8-6410 and Core i7-2637M technologies aimed at improving security, for example, by protecting against hacks.

TXTno data+
EDBno data+
Identity Protection-+
Anti-Theftno data+

Virtualization technologies

Virtual machine speed-up technologies supported by A8-6410 and Core i7-2637M are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A8-6410 and Core i7-2637M. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3L-1866DDR3-1066, DDR3-1333
Maximum memory sizeno data8.01 GB
Max memory channels12
Maximum memory bandwidthno data21.335 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon R5 GraphicsIntel HD Graphics 3000
Quick Sync Video-+
Clear Video HDno data+
Enduro+-
Switchable graphics+-
UVD+-
VCE+-
Graphics max frequencyno data1.2 GHz
InTru 3Dno data+

Graphics interfaces

Available interfaces and connections of A8-6410 and Core i7-2637M integrated GPUs.

Number of displays supportedno data2
eDPno data+
DisplayPort++
HDMI++
SDVOno data+
CRTno data+

Graphics API support

APIs supported by A8-6410 and Core i7-2637M integrated GPUs, sometimes API versions are included.

DirectXDirectX® 12no data
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A8-6410 and Core i7-2637M.

PCIe version2.02.0
PCI Express lanesno data16

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A8-6410 1.11
i7-2637M 1.17
+5.4%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A8-6410 1770
i7-2637M 1868
+5.5%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A8-6410 224
i7-2637M 445
+98.7%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A8-6410 592
i7-2637M 968
+63.5%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A8-6410 1887
i7-2637M 3600
+90.8%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A8-6410 5872
i7-2637M 7074
+20.5%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A8-6410 2866
+1.1%
i7-2637M 2834

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A8-6410 24.3
i7-2637M 21.7
+12%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A8-6410 2
i7-2637M 2
+9.3%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

A8-6410 165
i7-2637M 201
+21.8%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

A8-6410 49
i7-2637M 93
+89.8%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A8-6410 0.6
i7-2637M 1.09
+81.7%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A8-6410 12
i7-2637M 12
+2.5%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A8-6410 54
i7-2637M 70
+27.8%

Geekbench 3 32-bit multi-core

A8-6410 3756
i7-2637M 4566
+21.6%

Geekbench 3 32-bit single-core

A8-6410 1277
i7-2637M 2288
+79.2%

Gaming performance

Pros & cons summary


Performance score 1.11 1.17
Recency 1 June 2014 3 January 2011
Physical cores 4 2
Chip lithography 28 nm 32 nm
Power consumption (TDP) 15 Watt 17 Watt

A8-6410 has an age advantage of 3 years, 100% more physical cores, a 14.3% more advanced lithography process, and 13.3% lower power consumption.

i7-2637M, on the other hand, has a 5.4% higher aggregate performance score.

Given the minimal performance differences, no clear winner can be declared between A8-6410 and Core i7-2637M.


Should you still have questions on choice between A8-6410 and Core i7-2637M, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A8-6410
A8-6410
Intel Core i7-2637M
Core i7-2637M

Other comparisons

We've compiled a selection of CPU comparisons, ranging from closely matched processors to other comparisons that may be of interest.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.6 324 votes

Rate A8-6410 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.6 13 votes

Rate Core i7-2637M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A8-6410 or Core i7-2637M, agree or disagree with our judgements, or report an error or mismatch.