M-5Y10 vs A8-6410

VS

Aggregate performance score

A8-6410
2014
4 cores / 4 threads, 15 Watt
1.12
+8.7%
Core M-5Y10
2014
2 cores / 4 threads, 4 Watt
1.03

A8-6410 outperforms Core M-5Y10 by a small 9% based on our aggregate benchmark results.

Primary details

Comparing A8-6410 and Core M-5Y10 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking24112452
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Core M
Power efficiency7.0719.50
Architecture codenameBeema (2014)Broadwell-Y (2014)
Release date1 June 2014 (10 years ago)5 September 2014 (10 years ago)

Detailed specifications

A8-6410 and Core M-5Y10 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads44
Base clock speed2 GHz0.8 GHz
Boost clock speed2.4 GHz2 GHz
Bus typeno dataDMI 2.0
Multiplierno data8
L1 cacheno data64K (per core)
L2 cache2048 KB256K (per core)
L3 cacheno data4 MB (shared)
Chip lithography28 nm14 nm
Die sizeno data50 mm2
Maximum core temperature90 °C95 °C
Number of transistors930 Million1300 Million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A8-6410 and Core M-5Y10 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configurationno data1
SocketFT3bFCBGA1234
Power consumption (TDP)15 Watt4.5 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A8-6410 and Core M-5Y10. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX, SSE4.2, AES, AVX, BMI1, F16C, AMD64, VTIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
FMAFMA4-
AVX++
PowerNow+-
PowerGating+-
VirusProtect+-
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data2.0
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
Smart Responseno data+
FDIno data+
Fast Memory Accessno data+

Security technologies

A8-6410 and Core M-5Y10 technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+
Secure Keyno data+
Identity Protection-+
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by A8-6410 and Core M-5Y10 are enumerated here.

AMD-V++
VT-dno data+
VT-xno data+
EPTno data+
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A8-6410 and Core M-5Y10. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3L-1866DDR3
Maximum memory sizeno data16 GB
Max memory channels12
Maximum memory bandwidthno data25.6 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon R5 GraphicsIntel HD Graphics 5300
Max video memoryno data16 GB
Quick Sync Video-+
Clear Video HDno data+
Enduro+-
Switchable graphics+-
UVD+-
VCE+-
Graphics max frequencyno data800 MHz
InTru 3Dno data+

Graphics interfaces

Available interfaces and connections of A8-6410 and Core M-5Y10 integrated GPUs.

Number of displays supportedno data3
eDPno data+
DisplayPort++
HDMI++

Graphics image quality

Maximum display resolutions supported by A8-6410 and Core M-5Y10 integrated GPUs, including resolutions over different interfaces.

Max resolution over HDMI 1.4no data2560x1600@60Hz
Max resolution over DisplayPortno data2560x1600@60Hz

Graphics API support

APIs supported by A8-6410 and Core M-5Y10 integrated GPUs, sometimes API versions are included.

DirectXDirectX® 1211.2/12
OpenGLno data4.3
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A8-6410 and Core M-5Y10.

PCIe version2.02.0
PCI Express lanesno data12

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A8-6410 1.12
+8.7%
M-5Y10 1.03

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A8-6410 1775
+8%
M-5Y10 1644

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A8-6410 223
M-5Y10 462
+107%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A8-6410 589
M-5Y10 958
+62.6%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A8-6410 1887
M-5Y10 3102
+64.4%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A8-6410 5872
+12.5%
M-5Y10 5217

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A8-6410 2866
+44.2%
M-5Y10 1987

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A8-6410 24.3
+27.2%
M-5Y10 30.92

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A8-6410 2
+19.3%
M-5Y10 2

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

A8-6410 165
+6.5%
M-5Y10 155

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

A8-6410 49
M-5Y10 81
+65.3%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A8-6410 0.6
M-5Y10 0.95
+58.3%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A8-6410 12
+22.9%
M-5Y10 10

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A8-6410 54
M-5Y10 56
+2.2%

Geekbench 3 32-bit multi-core

A8-6410 3756
M-5Y10 3854
+2.6%

Geekbench 3 32-bit single-core

A8-6410 1277
M-5Y10 2008
+57.2%

Gaming performance

Pros & cons summary


Performance score 1.12 1.03
Recency 1 June 2014 5 September 2014
Physical cores 4 2
Chip lithography 28 nm 14 nm
Power consumption (TDP) 15 Watt 4 Watt

A8-6410 has a 8.7% higher aggregate performance score, and 100% more physical cores.

M-5Y10, on the other hand, has an age advantage of 3 months, a 100% more advanced lithography process, and 275% lower power consumption.

Given the minimal performance differences, no clear winner can be declared between A8-6410 and Core M-5Y10.


Should you still have questions on choice between A8-6410 and Core M-5Y10, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A8-6410
A8-6410
Intel Core M-5Y10
Core M-5Y10

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.6 324 votes

Rate A8-6410 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.1 9 votes

Rate Core M-5Y10 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A8-6410 or Core M-5Y10, agree or disagree with our judgements, or report an error or mismatch.