A4-5000 vs A6-6400K

VS

Aggregate performance score

A6-6400K
2013
2 cores / 2 threads, 65 Watt
0.95
+17.3%
A4-5000
2013
4 cores / 4 threads, 15 Watt
0.81

A6-6400K outperforms A4-5000 by a moderate 17% based on our aggregate benchmark results.

Primary details

Comparing A6-6400K and A4-5000 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking25012588
Place by popularitynot in top-100not in top-100
Market segmentDesktop processorLaptop
SeriesAMD A-Series (Desktop)AMD A-Series
Power efficiency1.385.11
Architecture codenameRichland (2013−2014)Kabini (2013−2014)
Release date1 June 2013 (11 years ago)23 May 2013 (11 years ago)

Detailed specifications

A6-6400K and A4-5000 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)4 (Quad-Core)
Threads24
Base clock speed3.9 GHzno data
Boost clock speed4.1 GHz1.5 GHz
L1 cache96 KBno data
L2 cache1024 KB2048 KB
L3 cache0 KB0 KB
Chip lithography32 nm28 nm
Die size246 mm2246 mm2
Maximum core temperature70 °Cno data
Maximum case temperature (TCase)70 °C90 °C
Number of transistors1,178 million1,178 million
64 bit support++
Windows 11 compatibility--
Unlocked multiplier+-

Compatibility

Information on A6-6400K and A4-5000 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11
SocketFM2FT3
Power consumption (TDP)65 Watt15 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A6-6400K and A4-5000. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX, SSE1-4a, AES, ABM, AVX, BMI1, AMD64, VT, EVP, Turbo Core 3.086x SSE (1, 2, 3, 3S, 4.1, 4.2, 4A),-64, AES, AVX
AES-NI++
FMAFMA4FMA4
AVX++
PowerNow++
PowerGating++
VirusProtect++

Virtualization technologies

Virtual machine speed-up technologies supported by A6-6400K and A4-5000 are enumerated here.

AMD-V++
IOMMU 2.0++

Memory specs

Types, maximum amount and channel quantity of RAM supported by A6-6400K and A4-5000. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3-1866DDR3
Max memory channels21

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon HD 8470DAMD Radeon HD 8330
Number of pipelines192no data
Enduro++
Switchable graphics++
UVD++
VCE++

Graphics interfaces

Available interfaces and connections of A6-6400K and A4-5000 integrated GPUs.

DisplayPort++
HDMI++

Graphics API support

APIs supported by A6-6400K and A4-5000 integrated GPUs, sometimes API versions are included.

DirectXDirectX® 11DirectX® 12
Vulkan-+

Peripherals

Specifications and connection of peripherals supported by A6-6400K and A4-5000.

PCIe version2.02.0

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A6-6400K 0.95
+17.3%
A4-5000 0.81

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A6-6400K 1504
+16.7%
A4-5000 1289

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A6-6400K 410
+161%
A4-5000 157

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A6-6400K 576
+23.9%
A4-5000 465

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A6-6400K 3068
+154%
A4-5000 1207

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A6-6400K 5079
+21.9%
A4-5000 4165

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A6-6400K 2654
+30.2%
A4-5000 2039

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A6-6400K 2
+12.2%
A4-5000 1

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

A6-6400K 149
+25.2%
A4-5000 119

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

A6-6400K 88
+167%
A4-5000 33

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A6-6400K 0.83
+113%
A4-5000 0.39

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

A6-6400K 1
+4.3%
A4-5000 0.9

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A6-6400K 11
+28.4%
A4-5000 9

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A6-6400K 57
+37.7%
A4-5000 41

Gaming performance

Pros & cons summary


Performance score 0.95 0.81
Integrated graphics card 0.97 0.69
Physical cores 2 4
Threads 2 4
Chip lithography 32 nm 28 nm
Power consumption (TDP) 65 Watt 15 Watt

A6-6400K has a 17.3% higher aggregate performance score, and 40.6% faster integrated GPU.

A4-5000, on the other hand, has 100% more physical cores and 100% more threads, a 14.3% more advanced lithography process, and 333.3% lower power consumption.

The A6-6400K is our recommended choice as it beats the A4-5000 in performance tests.

Note that A6-6400K is a desktop processor while A4-5000 is a notebook one.


Should you still have questions on choice between A6-6400K and A4-5000, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A6-6400K
A6-6400K
AMD A4-5000
A4-5000

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.1 170 votes

Rate A6-6400K on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.8 371 vote

Rate A4-5000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A6-6400K or A4-5000, agree or disagree with our judgements, or report an error or mismatch.